# Accepted Manuscript

The Chondrogenic Effect of Intra-articular Hypertonic-dextrose (prolotherapy) in Severe Knee Osteoarthritis

Gastón Andrés Topol, M.D., Leandro Ariel Podesta, M.D., Kenneth Dean Reeves, M.D., FAAPM&R, Marcia Mallma Giraldo, M.D., Lanny L. Johnson, M.D., AAOS, Raul Grasso, M.D. (Deceased), Alexis Jamín, M.D., D.C. Tom Clark, R.V.T., R.M.S.K, David Rabago, M.D.



PII: S1934-1482(16)30054-5

DOI: 10.1016/j.pmrj.2016.03.008

Reference: PMRJ 1684

To appear in: PM&R

- Received Date: 5 September 2015
- Revised Date: 24 March 2016

Accepted Date: 25 March 2016

Please cite this article as: Topol GA, Podesta LA, Reeves KD, Giraldo MM, Johnson LL, Grasso R, Jamín A, Tom Clark DC, Rabago D, The Chondrogenic Effect of Intra-articular Hypertonic-dextrose (prolotherapy) in Severe Knee Osteoarthritis, *PM&R* (2016), doi: 10.1016/j.pmrj.2016.03.008.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- 1 The Chondrogenic Effect of Intra-articular Hypertonic-dextrose
- 2 (prolotherapy) in Severe Knee Osteoarthritis.
- 3
- 4 Gastón Andrés Topol, M.D.
- 5 Clinical Instructor
- 6 Department of Physical Medicine and Rehabilitation
- 7 National University of Rosario
- 8 gtopol@hotmail.com
- 9
- 10 Leandro Ariel Podesta, M.D.
- 11 Clinical Instructor
- 12 Department of Orthopaedics
- 13 National University of Rosario
- 14 podestaleandro@yahoo.com.ar
- 15
- 16 Kenneth Dean Reeves, M.D., FAAPM&R
- 17 Clinical Assistant/Associate Professor (1986-2015)
- 18 Department of PM&R
- 19 University of Kansas Medical Center
- 20 Kansas City, Kansas, U.S.A
- 21 DeanReevesMD@gmail.com
- 22
- 23 Marcia Mallma Giraldo, M.D.

- 24 Orthopedic Surgeon of Hospital Provincial de Rosario, Argentina
- 25

26 Lanny L. Johnson, M.D., AAOS.

- 27 Clinical Professor
- 28 Department of Radiology
- 29 College of Human Medicine
- 30 Michigan State University
- 31 Clinical Professor (1984-2006)
- 32 Department of Orthopaedic Surgery
- 33 Michigan State University,
- East Lansing, MI.
- 35 <u>lljmd@aol.com</u>
- 36
- 37 Raul Grasso, M.D. (Deceased)
- 38 Private practice anatamopathology consultation,
- 39 Rosario, Argentina.
- 40 Past Department Chairman Pathology and Cytopathology 1976-2002
- 41 Provincial Hospital Domingo Funes
- 42 Santa Maria de Punilla, Argentina
- 43
- 44 Alexis Jamín, M.D.
- 45 Clinical Instructor
- 46 Department of Radiology

- 47 Hospital Emergencia Clemente Alvarez
- 48 Rosario, Argentina.
- 49
- 50 Tom Clark D.C., R.V.T., R.M.S.K.
- 51 Private Practice Ultrasonographic Training,
- 52 Vista, California.
- 53 <u>Clarkmskus@aol.com</u>
- 54
- 55 David Rabago, M.D.
- 56 Associate Professor
- 57 Department of Family Medicine and Community Health
- 58 University of Wisconsin School of Medicine and Public Health,
- 59 Madison, WI 53715
- 60 david.rabago@fammed.wisc.edu
- 61
- 62 Corresponding Autthor
- 63 K. Dean Reeves, M.D.
- 64 DeanReevesMD@gmail.com
- 65 Fax(913)362-4452 Telephone (913)362-1600
- 66
- 67 Clinical Trials Identifier: NCT01210183
- 68 Ethics committee approval: National University of Argentina 3592-2009
- 69

- 70 Funding: Primarily self funded. Funding contribution via the American
- 71 Association of Orthopaedic Medicine (AAOM). There was no involvement of the
- 72 AAOM in protocol development, conduct or write-up of this study.
- 73

74 Confict of interest: None to report.

- 75
- The abstract of this study was presented in October of 2015 as a poster at the
- 77 American Congress of Rehabilitation Medicine in Dallas, Texas.
- 78

| 1        | TITLE                                                                                                                                                              |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | The Chondrogenic Effect of Intra-articular Hypertonic-dextrose                                                                                                     |
| 3        | (prolotherapy) in Severe Knee Osteoarthritis.                                                                                                                      |
| 4        | ABSTRACT                                                                                                                                                           |
| 5        | Background: Dextrose injection is reported to improve KOA-related clinical                                                                                         |
| 6        | outcomes, but its effect on articular cartilage is unknown. A chondrogenic effect                                                                                  |
| 7        | of dextrose injection has been proposed.                                                                                                                           |
| 8<br>9   | <b>Objective:</b> To assess biological and clinical effects of intra-articular hypertonic dextrose injections (prolotherapy) in painful knee osteoarthritis (KOA). |
| 10       | Design: Case series with blinded arthroscopic evaluation before and after                                                                                          |
| 11       | treatment.                                                                                                                                                         |
| 12       | Setting: Physical medicine and day surgery practice.                                                                                                               |
| 13       | Participants: Symptomatic KOA for at least 6 months, arthroscopy-confirmed                                                                                         |
| 14       | medial compartment exposed subchondral bone, and temporary pain relief with                                                                                        |
| 15       | intra-articular lidocaine injection.                                                                                                                               |
| 16<br>17 | Intervention: Four to six monthly 10 mL intra-articular injections with 12.5% dextrose.                                                                            |
| 18       | Main outcome measures: Visual cartilage growth assessment of 9 standardized                                                                                        |

19 medial condyle zones in each of 6 participants by three arthroscopy readers

20 masked to pre/post injection status (total 54 zones evaluated per reader); biopsy 21 of a cartilage growth-area post-treatment, evaluated using H&E and Safranin-O 22 stains, quantitative polarized light microscopy, and immunohistologic cartilage

23 typing; self-reported knee specific quality of life using the Western Ontario

24 McMaster University Osteoarthritis Index (WOMAC, 0-100 points).

25 Results: Six participants (1 female) with median age of 71, WOMAC composite score of 57.5 points and a 9-year pain duration received a median 6 dextrose 26 injections and follow-up arthroscopy at 7.75 (4.5-9.5) months. In 19 of 54 zone 27 28 comparisons all three readers agreed that the post-treatment zone showed 29 cartilage growth compared with the pre-treatment zone. Biopsy specimens 30 showed metabolically active cartilage with variable cellular organization, fiber 31 parallelism, and cartilage typing patterns consistent with fibro- and hyaline-like 32 cartilage. Compared with baseline status, the median WOMAC score improved 33 13 points (p=.013). Self-limited soreness after methylene-blue instillation was 34 noted.

Conclusions: Positive clinical and chondrogenic effects were seen after
 prolotherapy with hypertonic dextrose injection in symptomatic grade IV KOA
 participants suggesting disease-modifying effects and the need for confirmation
 in controlled studies. Minimally invasive arthroscopy (single-compartment, single portal) enabled collection of robust intra-articular data.

40 Key words: Chondrogenesis; osteoarthritis; knee; dextrose; intra-articular
41 injections; prolotherapy.

- 42 Abbreviations:
- 43 Knee osteoarthritis (KOA)
- 44 Western Ontario McMaster University Osteoarthritis Index (WOMAC, 100 points)
- 45 Numerical Rating Scale (NRS, 0-10)
- 46 Insulin-like Growth Factor-1 (IGF-1)
- 47 Hematoxylin and eosin (H&E)

clearly demonstrated.<sup>6,11</sup>

- 48 Quantitative polarized light microscopy (QPLM)
- 49 Body Mass Index (BMI)
- 50
- 51

## Introduction

- 52 The Agency for Healthcare Research and Quality and the Institute of Medicine
- 53 have called for evaluation of new knee osteoarthritis (KOA) therapies.<sup>1,2</sup>
- 54 Hypertonic-dextrose injection (prolotherapy) is a treatment for chronic
- 55 musculoskeletal pain, including KOA.<sup>3</sup> Functional and symptomatic benefit from
- 56 hypertonic dextrose injection in knee osteoarthritis has been reported in three
- 57 randomized controlled trials (RCTs) and three open-label studies, with stability of
- 58 benefit at 30 month follow-up.<sup>4-9</sup> Animal and *in vitro* model data suggest cartilage-
- 59 specific anabolic growth as a result of intra-articular dextrose injection.<sup>10</sup> A
- 60 chondrogenic effect of intra-articular dextrose injection in human osteoarthritic
- 61 knees has been hypothesized and assessed by radiograph and MRI, but not
- 63

| 64 | Arthroscopy has been used for post-procedure "second-look" to evaluate the                      |
|----|-------------------------------------------------------------------------------------------------|
| 65 | biological response of articular cartilage following stem cell injection and surgical           |
| 66 | procedures. <sup>12,13</sup> Direct visualization with arthroscopy and biopsy has the potential |
| 67 | to detect subtle biological changes and may detect early cartilage change more                  |
| 68 | accurately than MRI, <sup>14</sup> enabling the robust screening of potential chondrogenic      |
| 69 | effects in disease modification studies. We therefore tested the hypothesis that,               |
| 70 | among participants with severe symptomatic KOA, intra-articular hypertonic                      |
| 71 | dextrose injections will be associated with chondrogenesis and clinical                         |
| 72 | improvement compared with baseline status, as assessed by masked                                |
| 73 | arthroscopic video review before and after treatment, post-treatment biopsy, and                |
| 74 | a disease-specific outcome questionnaire respectively.                                          |
| 75 |                                                                                                 |
| 76 | Methods                                                                                         |
| 77 | The study protocol was approved by the Bioethics Committee of the National                      |
| 78 | University of Argentina in Rosario, Argentina. Due to the self-funded and                       |
| 79 | preliminary nature of this study, enrollment was limited to six participants.                   |
| 80 |                                                                                                 |
| 81 | Eligibility criteria and participant recruitment                                                |
| 82 | Inclusion criteria included knee pain for at least six months, clinically diagnosed             |
| 83 | KOA, <sup>15</sup> a weight bearing x-ray consistent with high grade medial compartment         |
| 84 | cartilage loss (Kellgren-Lawrence Grading Scale level IV; Figure 1), and                        |
| 85 | confirmation of exposed subchondral bone by high resolution knee                                |
| 86 | ultrasonography. <sup>16</sup> Exclusion criteria included anticoagulation therapy,             |

inflammatory or post-infectious knee arthritis, systemic inflammatory conditions,

knee flexion of less than 100 degrees, knee extension of less than 165 degrees,

any valgus, varus deviation greater than 20 degrees, or less than 90% acute pain

relief after intra-articular injection of 10 ml of 0.2% lidocaine.

87

88

89

90

| 91  |                                                                                             |
|-----|---------------------------------------------------------------------------------------------|
| 92  | Assessment                                                                                  |
| 93  | Age, pain duration, prior knee interventions, and body mass index (BMI) were                |
| 94  | recorded at study entry. Biological, clinical and functional assessment occurred            |
| 95  | at a single follow-up time point after completion of treatment. Biological                  |
| 96  | assessment included methylene blue stain for cartilage at arthroscopy, followed             |
| 97  | by a pre- and post-treatment zone-by-zone videography of the medial condyle                 |
| 98  | and a post-treatment biopsy with histologic and immunohistologic evaluation, as             |
| 99  | described below. Clinical and functional assessment included knee range of                  |
| 100 | motion measurement using a goniometer, <sup>17</sup> disease specific quality-of-life score |
| 101 | (composite Western Ontario McMaster University Osteoarthritis [WOMAC,0-100                  |
| 102 | points]) <sup>18</sup> and knee pain severity with walking (0-10 numerical rating scale     |
| 103 | [NRS]). <sup>19</sup>                                                                       |
| 104 | Pre-Treatment Arthroscopy, Treatment, Post -Treatment Arthroscopy,                          |
| 105 | Biopsy, and Histology                                                                       |
| 106 | A single orthopedic surgeon (LAP) performed all arthroscopies in an outpatient              |
| 107 | hospital setting. Analgesia for arthroscopy consisted of intra-articular injection of       |

- 108 20 mL 0.5% bupivicaine with epinephrine, 20 mL of 2% lidocaine with
- 109 epinephrine, and 20 mcg of fentanyl in 20 mL of sodium chloride. The procedure

| 110 | was minimally traumatic using one entry port; inspection was limited to the                  |
|-----|----------------------------------------------------------------------------------------------|
| 111 | medial femoral condyle without flipping the scope to view the patellar surface.              |
| 112 | Sixty mL of 0.14% methylene blue solution was instilled and left in place for 10             |
| 113 | minutes; the knee was then flushed with 4 liters of sterile water. A video of the            |
| 114 | entire medial compartment was then made with standardized zone-by-zone                       |
| 115 | scope movement through each of 9 portions of the medial condyle (Figure 2a; A-               |
| 116 | I). <sup>20</sup> Each of the 9 portions was labeled with the appropriate letter using video |
| 117 | editor software (AVS Video Editor 6.1.2.211- Online Media Technologies Ltd)                  |
| 118 | and the video was then libraried.                                                            |
| 119 |                                                                                              |
| 120 | Treatment consisted of sterile preparation with chlorhexidine gluconate, followed            |
| 121 | by intra-articular injection of 12.5% dextrose (5 mL of 25% dextrose, 5 mL of                |
| 122 | normal saline) via a lateral approach to the supra-patellar pouch under                      |
| 123 | ultrasound guidance. <sup>21</sup> Participants were asked to avoid taking glucosamine and   |
| 124 | chondroitin and to minimize weight bearing for 3 days after injection by using               |
| 125 | support of arms and opposite leg when rising from a chair and to avoid running               |
| 126 | and squatting during the remainder of the study. Assistive devices such as canes             |
| 127 | or crutches were not required.                                                               |
| 128 |                                                                                              |
| 129 | The original protocol called for four monthly intra-articular dextrose injections            |
| 130 | (baseline, 1, 2 and 3 months) followed by arthroscopy at 4 months post-baseline              |
| 131 | injection. However, after the first participant completed injection and follow-up            |
| 132 | arthroscopy, and while participants 2-6 were receiving injections, an unforeseen             |

133 construction project closed the arthroscopy facility for several months. This 134 delayed the acquisition of arthroscopy for participants 2-6. Because the 135 investigators were concerned that weight-bearing ambulation for several months 136 in the absence of monthly injections could eliminate evidence of a dextroserelated chondrogenic effect should one exist, we requested and received 137 permission from the human subjects committee to increase the number of 138 139 injection sessions from 4 to 6. While this created a difference in the planned 140 number of injections between participant 1 (four injections) and participants 2-6 141 (six injections), our intention was to obtain all arthroscopies within three months 142 of the final injection.

143

Video recordings from the first arthroscopy were reviewed by the lead surgeon 144 145 prior to the follow-up arthroscopy, who then repeated the method of the index procedure; a biopsy was obtained from an area of potential new growth, as 146 147 defined by a new area of methylene blue dye uptake on the base of the exposed subchondral bone. The same single portal was used to place the 11-gauge 10 148 149 cm Jamshi needle (Cardinal Health DJ4011X). A photograph of the biopsy site was taken pre- and post-biopsy. The biopsy was subjected to 1% Safranin-O and 150 151 hematoxylin and eosin (H&E) staining (RG, Anatomopathology Consultation 152 Clinic in Rosario, Argentina) according to standard histotechnologic methods.<sup>22</sup> 153 Quantitative polarized light microscopy (QPLM) was performed (Department of 154 Bioengineering at the University of California, San Diego) along with timed

155 immunohistologic stain applications for Type I and Type II cartilage of the

156 specimens and normal human cartilage controls.<sup>23</sup>

157

## 158 Comparative Zone-by-Zone Readings of Libraried Arthroscopies

Three orthopedic surgeons (VOG, YUK, AC) otherwise uninvolved with the Study 159 160 and its participants, and with 14,16 and 20 years of experience performing knee 161 arthroscopies respectively, volunteered to be outside reviewers. They performed 162 comparative zone-by-zone readings of the arthroscopies and were masked to the 163 date on which the arthroscopy was obtained. Computer randomization prepared 164 by the statistician (ALC) was used to assign the pre-treatment arthroscopy to either "Arthroscopy A" or "Arthroscopy B"; then the same assignation was 165 performed for the post-treatment arthroscopy, and both were loaded onto the 166 167 timeline of the video editing program, saved in that randomized order, and reviewed independently by each reviewer. The reviewers were asked to view 168 each zone A-I, moving the video timeline back and forth between Arthroscopy A 169 170 and B and answer the following question: "Comparing arthroscopy A with 171 arthroscopy B, which zone has the appearance of additional cartilage growth, A, B, or N(neither)." Reviewers completed a table with 54 responses (9 zones for 172 each of 6 participants). Unblinding occurred after the arthroscopies were scored. 173 174

175 Analysis

The results of section-by-section arthroscopic video analysis of each of 9
sections of the medial condyle in all 6 participants by each surgeon-reader were

178 summarized for display on a medial condyle map, and compared for inter-reader reliability using a Fleiss' kappa statistic.<sup>24</sup> Histologic findings were summarized 179 180 using photos in a per-participant manner. Non-arthroscopic data were analyzed using PASW 18 (Predictive Analytics Software 18.0.0, IBM). Descriptive statistics 181 (median and interguartile range); or number / percent) described non-182 183 arthroscopic data at baseline and each follow-up time point. A paired-samples T-184 test was utilized to compare the WOMAC scores, 0-10 NRS pain scores, and 185 knee flexion and extension measures at baseline to those collected before the 186 second arthroscopy. 187 Results 188 Enrollment and follow-up occurred from February 2010 to June 2013. Twenty 189 190 potential participants were referred to the study team (Figure 1). Eight met initial eligibility criteria. One declined arthroscopy and one was disgualified due to 191 192 severe hypertrophic synovitis confirmed by multiple synovial proliferation folds. 193 Thus, six participants were enrolled with one assessed knee each; data from two 194 right knees and four left knees were included in the analysis. 195 The study sample consisted of five men and one woman with median age of 71, 196 197 BMI of 26.25, and knee pain duration of 9.6 years (Table 1). A median initial 198 composite WOMAC score of 57.5, and limitation of knee flexibility suggested 199 moderate to severe baseline symptomatic KOA. 200

| 201 | Ultrasound imaging showed a partially denuded medial femoral condyle as well         |
|-----|--------------------------------------------------------------------------------------|
| 202 | as cortical irregularities (Figure 3; column 1). All participants showed baseline    |
| 203 | multi-compartmental osteoarthritis on lateral and AP films (Fig. 3; columns 2 and    |
| 204 | 3). Exposed subchondral bone was confirmed in each participant on initial            |
| 205 | arthroscopy.                                                                         |
| 206 |                                                                                      |
| 207 | Participant 1 received 4 injections and participants 2-6 received 6 injections prior |
| 208 | to the follow-up arthroscopy at a median 7.75 (range 4.5-9.5) months.                |
| 209 |                                                                                      |
| 210 | Arthroscopic Zone-by-Zone Outcomes                                                   |
| 211 | In 19 of 54 zones evaluated (35%), all three readers agreed that the post-           |
| 212 | treatment zone showed cartilage growth compared with the pre-treatment zone.         |
| 213 | In 35 of 54 zones assessed, the three readers did not all agree, consistent with a   |
| 214 | low Fleiss' kappa value of inter-reader agreement of .007. Figure 2a shows the       |
| 215 | zones of the medial condyle for orientation and figure 2b shows the number of        |
| 216 | zones for which all 3 reviewers agreed on growth. For example, all reviewers         |
| 217 | rated zone I to show more growth in 3 of the 6 participants. In addition, all        |
| 218 | participants showed areas of growth; specifically, all three reviewers agreed that   |
| 219 | at least 2 zones showed cartilage growth in each participant.                        |
| 220 |                                                                                      |
| 221 | Arthroscopic Documentation of Biopsy Locations                                       |

To confirm that the biopsy was taken from an area of new growth, the pre- and post-arthroscopy pictures are provided (Figure 4; columns 2 and 3), the area of

| 224 | biopsy is outlined by a red box (column 4), and the post biopsy defect is shown.    |
|-----|-------------------------------------------------------------------------------------|
| 225 | Although the biopsy for participant 3 cut across an area which may have included    |
| 226 | some previous cartilage in addition to new growth, all others were from             |
| 227 | exclusively new growth areas.                                                       |
| 228 |                                                                                     |
| 229 | Basic Stains and Immunohistology for Cartilage Type                                 |
| 230 | Figure 5 shows histological and immunohistologic findings for the medial condyle    |
| 231 | biopsy site. All Safranin-O stained slides showed orange stain uptake indicating    |
| 232 | the presence of negatively charged molecules in the matrix, consistent with         |
| 233 | glycosaminoglycans, and consistent with normal cartilage cell function. All H&E     |
| 234 | stained slides, assessing the presence of organized tissue growth on formerly       |
| 235 | denuded bone, showed a mixture of organized and disorganized tissue. QPLM           |
| 236 | assessment for fiber parallelism index showed areas of high fiber parallelism       |
| 237 | (orange or red areas), consistent with organized hyaline-like cartilage, in all but |
| 238 | one participant (participant five). Positive uptake for Type I immunohistologic     |
| 239 | stain was noted in biopsy specimens from all participants, confirming that each     |
| 240 | specimen contained a fibrocartilage component. Positive uptake of Type II           |
| 241 | immunohistologic stain was noted in all biopsy specimens except participant 5,      |
| 242 | consistent with the presence of hyaline-like cartilage.                             |
| 243 |                                                                                     |

## 244 Clinical Outcomes

Median composite WOMAC scores improved from baseline to arthroscopic
follow-up by 13 points (p=.013; Table 2). Median NRS-assessed pain severity

decreased by 3.7 points (p=.013). Median knee flexion improved 7.5 degrees
(p=.034); median knee extension deficit improvement was not significant (2.5)

249 degrees; p=.086).

250

## 251 Side effects and adverse events

- There were no adverse events associated with the injection procedures or with arthroscopies. All participants noted self-limited mild-to-moderate, delayed-onset aching pain lasting hours to 3 weeks after arthroscopy. This was greater than that noted among non-study post-arthroscopy patients not receiving methylene blue, and was thought to be related to a reaction to residual methylene blue after irrigation.
- 258
- 259
- 260

# Discussion

| 261 | This study assessed the hypotheses that intra-articular hypertonic dextrose       |
|-----|-----------------------------------------------------------------------------------|
| 262 | injection is 1) associated with chondrogenesis and 2) provides a clinical benefit |
| 263 | compared to baseline status in participants with severe symptomatic KOA.          |
| 264 |                                                                                   |
| 265 | The evidence favoring chondrogenesis includes agreement by all three reviewers    |
| 266 | of cartilage growth in 35% of possible evaluated zones and                        |
| 267 | histological/immunohistological presence of new cartilage in all 6 participants,  |
| 268 | with a hyaline-like component in 5 of 6 biopsies from photographically-confirmed  |
| 269 | areas of new methylene blue uptake. Mapping of growth zones confirms that this    |
|     |                                                                                   |

| 270 | growth occurred in both non-weightbearing and weightbearing areas. These               |
|-----|----------------------------------------------------------------------------------------|
| 271 | outcomes were obtained post-procedure without use of weight-reducing devices           |
| 272 | such as off-loading braces. Unloading of the knee remains best care after              |
| 273 | cartilage repair procedures; <sup>25</sup> therefore, these data may underestimate the |
| 274 | potential effect of the procedure in the presence of unloading. The improvement        |
| 275 | in clinical measures was statistically significant and clinically important, and       |
| 276 | consistent with three open-label studies and three RCTs of hypertonic dextrose         |
| 277 | prolotherapy injections for knee OA. <sup>4-9</sup>                                    |
| 278 |                                                                                        |
| 279 | These changes may result from the procedure tested; the small volume of                |
| 280 | methylene blue and subsequent saline lavage are not chondrogenic, <sup>26-28</sup> and |
| 281 | neither is expected to result in the observed clinical benefit. Though the cartilage   |
| 282 | growth was limited to a relatively small portion of the denuded surface, these are     |
| 283 | the first objective data to support the hypothesis that hypertonic dextrose            |
| 284 | injection may stimulate the growth of cartilage in the human knee.                     |
| 285 |                                                                                        |
| 286 | While this study suggests cartilage growth and self-reported clinical improvement      |
| 287 | may be effects of hypertonic dextrose injection, we are not able to determine          |
| 288 | whether a single mechanism is responsible for either outcome, or whether the           |
| 289 | two outcomes are related. Several hypotheses for the mechanism of action of            |
| 290 | hypertonic dextrose injection have been advanced. The traditional view is that         |
| 291 | hypertonic dextrose initiates a brief inflammatory cascade stimulating native          |
| 292 | healing and subsequent tissue growth; clinical improvement then results from a         |

| 293 | restoration of tissue integrity. <sup>29</sup> Animal model studies have reported increased    |
|-----|------------------------------------------------------------------------------------------------|
| 294 | cross sectional area of MCL ligament in a rat model <sup>30</sup> and an increase in           |
| 295 | organized connective tissue width, thickening of collagen bundles, increase in                 |
| 296 | energy absorption and of load-before-rupture in a rabbit model <sup>31,32</sup> in response to |
| 297 | hypertonic dextrose injection. Ultrasound data suggest that hypertonic dextrose                |
| 298 | injection is followed by tissue regeneration in ligamentous tissue <sup>33,34</sup> however,   |
| 299 | analogous cartilage-specific data are lacking.                                                 |
| 300 |                                                                                                |
| 301 | A direct pain-modulating effect has also been hypothesized. Recent clinical trial              |

data suggest hypertonic dextrose may decrease pain via a sensori-neural
mechanism through direct exposure of dextrose to multiple intra-articular KOA
pain generators, including the fat pad, synovium and menisci. Two recent RCTs
have suggested that sugar (dextrose) and a sugar alcohol (mannitol) have an
analgesic effect in low back pain<sup>35</sup> and a capsaicin pain model<sup>36</sup> respectively,
consistent with a potential sensori-neural mechanism of these agents.

308

An alternative view is that glucose has direct anabolic effects.<sup>37</sup> In vitro data on glucose-specific effects on chondrocytes demonstrate proliferative effects that vary according to such factors as oxygen tension, osmolarity, and the source of the chondrocyte (osteoarthritic or non-osteoarthritic knees).<sup>38-43</sup> Synovial explants harvested from human donors and cultured in 0.45% dextrose demonstrated up to a fivefold elevation of IGF-1 gene expression and secreted IGF-1 into the tissue media.<sup>44</sup> Park et al. injected a solution that included 10% dextrose

| 316 | compared to normal saline into ACL-transection-induced OA knee joints of New                |
|-----|---------------------------------------------------------------------------------------------|
| 317 | Zealand white rabbits and reported decreased erosion of articular cartilage                 |
| 318 | overall compared to saline control, and minimal differences compared to normal              |
| 319 | cartilage which did not undergo ACL transection. <sup>10</sup>                              |
| 320 |                                                                                             |
| 321 | The current study is not able to identify the source of new cartilage. Progenitor           |
| 322 | cells within the synovial joint environment may contribute to endogenous                    |
| 323 | cartilage repair.45-47 Human synovium contains cells that, after culture expansion,         |
| 324 | display properties of mesenchymal stem cells. <sup>48</sup> Another potential source of the |
| 325 | cartilage growth is cartilaginous aggregates within the exposed subchondral                 |
| 326 | bone. Zhang et al. documented the presence of cartilaginous deposit aggregates              |
| 327 | in the subchondral bone in areas of the human osteoarthritic knee with exposed              |
| 328 | bone. <sup>49</sup>                                                                         |
|     |                                                                                             |

329

#### 330 Study Limitations

331 The primary limitations of this study are small sample size and absence of a 332 control group. Potential conclusions are therefore modest. However, the cohort was thoroughly evaluated; cartilage growth among all participants suggests a 333 334 modest but real chondrogenic response to hypertonic dextrose, and the 335 WOMAC-assessed response is consistent with blinded and non-blinded studies of hypertonic dextrose injections for KOA.<sup>6,7</sup>. The low overall agreement rate 336 among arthroscopy reviewers masked to date of arthroscopy limits slightly the 337 confidence of our conclusions. Several aspects of the review process may 338

account for uncertainty and subsequent lack of agreement; these include: 1) very
subtle growth, 2) No published guidelines on visual assessment of cartilage on
exposed subchondral bone, and 3) review instructions that did not define exactly
what constituted cartilage growth and were therefore open to interpretation by the
reviewers.

344

345 Generalizability is limited by three factors. 1) Eligibility criteria included only the 346 most severely affected knees; therefore, we are not able to address the potential effects of dextrose injection on patients with less severe KOA. While prior studies 347 have enrolled participants with K-L I-III KOA,<sup>4,7</sup> we chose to include participants 348 with KL IV and exposed subchondral bone because prior studies suggested 349 positive clinical effects from prolotherapy on all grades of KOA,<sup>4-9</sup> and detection 350 351 of cartilage growth is more clear on a denuded bone surface than on a cartilaginous surface. 2) The injection protocol varied slightly between one 352 participant and the other five; however, both four and six injection sets fall within 353 354 the clinically utilized number of injections. 3) Biopsy using a single entry port 355 cannot obtain samples at the preferred angle of entry of 90 degrees. While this could affect precise assessment of tissue depth by layer, the use of QPLM 356 357 allowed for an assessment of hyaline-like tissue quality via fiber parallelism, and 358 photographic confirmation of biopsy site confirmed that the biopsy location was in 359 an area of new methylene blue uptake.

360

| 362        |                                                                                    |
|------------|------------------------------------------------------------------------------------|
| 363        | Conclusions                                                                        |
| 364        | Intra-articular hypertonic dextrose injections were associated with                |
| 365        | chondrogenesis in areas of exposed subchondral bone in participants with           |
| 366        | symptomatic grade IV osteoarthritic knees. Participants improved clinically in     |
| 367        | self-reported and objectively-assessed functional outcomes consistent with         |
| 368        | previous randomized clinical trials. Minimally invasive single-compartment single- |
| 369        | portal arthroscopy enabled collection of robust data from a small number of        |
| 370        | participants, and may provide an attractive, cost-effective means with which to    |
| 371        | evaluate potentially disease-modifying therapy.                                    |
| 372<br>373 | Acknowledgements                                                                   |
| 374        | The Hospital Provincial de Rosario for their provision of both a surgical room and |
| 375        | nursing support for performance of arthroscopy.                                    |
| 376        | The Damas de Beneficencia of Hospital Provincial for purchasing the optical for    |
| 377        | the arthroscopy.                                                                   |
| 378        | American Association of Orthopedic Medicine, a 501(c)(3) corporation, for their    |
| 379        | dedication to research in regenerative medicine and their generous financial       |
| 380        | support.                                                                           |
| 381        | We acknowledge the assistance of orthopedic surgeons Alfredo Cacciabue,            |
| 382        | M.D., Victor O. Garcia, M.D., and Young Kim, M.D., who provided blinded            |
| 383        | external reviews of our pre and post treatment arthroscopy videos.                 |

| Profe<br>review<br>An-Li<br>Kansa | ssor, UCSD Dept of Orthopaedic Surgery, for histological processing and<br>w as an independent contractor.<br>n Cheng, Ph.D. (Statistics), Associate Professor, University of Missouri-<br>as City, School of Nursing and Health Studies, for statistical input and |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| reviev<br>An-Li<br>Kansa          | w as an independent contractor.<br>n Cheng, Ph.D. (Statistics), Associate Professor, University of Missouri-<br>as City, School of Nursing and Health Studies, for statistical input and                                                                            |
| An-Li<br>Kansa<br>analy           | n Cheng, Ph.D. (Statistics), Associate Professor, University of Missouri-<br>as City, School of Nursing and Health Studies, for statistical input and                                                                                                               |
| Kans                              | as City. School of Nursing and Health Studies, for statistical input and                                                                                                                                                                                            |
| analv                             |                                                                                                                                                                                                                                                                     |
| analy                             | sis.                                                                                                                                                                                                                                                                |
| Ana N                             | Maria Rodriguez, for her kind, valuable and persistent encouragement                                                                                                                                                                                                |
| during                            | g this study.                                                                                                                                                                                                                                                       |
|                                   |                                                                                                                                                                                                                                                                     |
|                                   |                                                                                                                                                                                                                                                                     |
|                                   | References                                                                                                                                                                                                                                                          |
| 1.                                | Samson DJ, Grant MD, Ratko TA, Bonnell CJ, Ziegler KM, Aronson N.                                                                                                                                                                                                   |
|                                   | Treatment of primary and secondary osteoarthritis of the knee. Agency for                                                                                                                                                                                           |
|                                   | Healthcare Research and Quality (Publication No. 07-E012): Evidence                                                                                                                                                                                                 |
|                                   | Report/Technology Assessment: Prepared by Blue Cross and Blue Shield                                                                                                                                                                                                |
|                                   | Association Technology Evaluation Center Evidence-based Practice                                                                                                                                                                                                    |
|                                   | Center under Contract No. 290-02-0026). Rockville, MD. 2007;157.                                                                                                                                                                                                    |
| 2.                                | Greenfield S, Sox H. Committee on Comparative Effectiveness Research                                                                                                                                                                                                |
|                                   | Prioritization Board on Health Care Services. Initial National Priorities for                                                                                                                                                                                       |
|                                   | Comparative Effectiveness Research. Accessed on September 11, 2014                                                                                                                                                                                                  |
|                                   | at                                                                                                                                                                                                                                                                  |
|                                   | http://www.iom.edu/Reports/2009/ComparativeEffectivenessResearchPrio                                                                                                                                                                                                |
|                                   | rities.aspx. Institute of Medicine of the National Academies. 2009.                                                                                                                                                                                                 |
|                                   | Ana M<br>during<br>1.<br>2.                                                                                                                                                                                                                                         |

| 3. | Rabago D, Slattengren A, Zgierska A. Prolotherapy in primary care                              |
|----|------------------------------------------------------------------------------------------------|
|    | practice. Prim Care. 2010;37:65-80.                                                            |
| 4. | Reeves KD, Hassanein K. Randomized Prospective Double-Blind                                    |
|    | Placebo-Controlled Study of Dextrose Prolotherapy for Knee Osteoarthritis                      |
|    | With or Without ACL laxity Alt Ther Hlth Med 2000;6(2):68-80.                                  |
| 5. | Dumais R, Benoit C, Dumais A, Babin L, Bordage R, de Arcos C, Allard J,                        |
|    | Belanger M. Effect of regenerative injection therapy on function and pain                      |
|    | in patients with knee osteoarthritis: a randomized crossover study. Pain                       |
|    | Med. 2012;13(8):990-999.                                                                       |
| 6. | Rabago D, Patterson JJ, Mundt M, Kijowski R, Grettie J, Segal NA,                              |
|    | Zgierska A. Dextrose prolotherapy for knee osteoarthritis: a randomized                        |
|    | controlled trial. Annals of family medicine. 2013;11(3):229-237.                               |
| 7. | Rabago D, Zgierska A, Fortney L, Kijowski R, Mundt M, Ryan M, Grettie J,                       |
|    | Patterson JJ. Hypertonic dextrose injections (prolotherapy) for knee                           |
|    | osteoarthritis: results of a single-arm uncontrolled study with 1-year follow-                 |
|    | up. J Altern Complement Med. 2012;18(4):408-414.                                               |
| 8. | Rabago D, Patterson JJ, Mundt M, Zgierska A, Fortney L, Grettie J,                             |
|    | Kijowski R. Dextrose and morrhuate sodium injections (prolotherapy) for                        |
|    | knee osteoarthritis: a prospective open-label trial. J Altern Complement                       |
|    | Med. 2014;20(5):383-391.                                                                       |
| 9. | Rabago D, Mundt M, Zgierska A, Grettie J. Hypertonic dextrose injection                        |
|    | (prolotherapy) for knee osteoarthritis: Long term outcomes. Complement                         |
|    |                                                                                                |
|    | <ol> <li>3.</li> <li>4.</li> <li>5.</li> <li>6.</li> <li>7.</li> <li>8.</li> <li>9.</li> </ol> |

| 430 | 10. | Park YS, Lim SW, Lee IH, Lee TJ, Kim JS, Han JS. Intra-articular injection       |
|-----|-----|----------------------------------------------------------------------------------|
| 431 |     | of a nutritive mixture solution protects articular cartilage from osteoarthritic |
| 432 |     | progression induced by anterior cruciate ligament transection in mature          |
| 433 |     | rabbits: a randomized controlled trial. Arthritis Res Ther. 2007;9(1):R8.        |
| 434 | 11. | Rabago D, Kijowski R, Woods M, Patterson JJ, Mundt M, Zgierska A,                |
| 435 |     | Grettie J, Lyftogt J, Fortney L. Association between disease-specific            |
| 436 |     | quality-of-life and magnetic resonance imaging outcomes in a clinical trial      |
| 437 |     | of prolotherapy for knee osteoarthritis. Arch Phys Med Rehabil.                  |
| 438 |     | 2013;94(11):2075-2082.                                                           |
| 439 | 12. | Koh YG, Jo SB, Kwon OR, Suh DS, Lee SW, Park SH, Choi YJ.                        |
| 440 |     | Mesenchymal stem cell injections improve symptoms of knee                        |
| 441 |     | osteoarthritis. Arthroscopy. 2013;29(4):748-755.                                 |
| 442 | 13. | Miao Y, Yu JK, Ao YF, Zheng ZZ, Gong Z, Leung KK. Diagnostic values of           |
| 443 |     | 3 methods for evaluating meniscal healing status after meniscal repair:          |
| 444 |     | comparison among second-look arthroscopy, clinical assessment, and               |
| 445 |     | magnetic resonance imaging Am J Sports Med 2011;39(4):735-742.                   |
| 446 | 14. | Guermazi A, Hayashi D, Roemer FW, Felson DT. Osteoarthritis: a review            |
| 447 |     | of strengths and weaknesses of different imaging options. Rheum Dis Clin         |
| 448 |     | North Am. 2013;39:567-591.                                                       |
| 449 | 15. | Altman RD. Criteria for classification of clinical osteoarthritis. J Rheumatol   |
| 450 |     | Suppl. 1991;27:10-12.                                                            |
| 451 | 16. | Martinoli C, Bianchi S. Knee. In: Bianchi S, Martinoli C, eds. Ultrasound of     |
| 452 |     | the musculoskeletal system. New York: Springer; 2007:727-729.                    |

| 453 | 17. | Peters PG, Herbenick MA, Anloague PA, Markert RJ, Rubino LJ. Knee             |
|-----|-----|-------------------------------------------------------------------------------|
| 454 |     | range of motion: reliability and agreement of 3 measurement methods. Am       |
| 455 |     | J Orthop. 2011;40(12):pE249-252.                                              |
| 456 | 18. | Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW.                   |
| 457 |     | Validation study of WOMAC: A health status instrument for measuring           |
| 458 |     | clinically important patient relevant outcomes in antirheumatic drug          |
| 459 |     | therapy in patients with osteoarthritis of the knee. Journal of               |
| 460 |     | Rheumatology. 1988;15:1833-1840.                                              |
| 461 | 19. | Salaffi F, Stancati A, Silvestri CA, Ciapetti A, Grassi W. Minimal clinically |
| 462 |     | important changes in chronic musculoskeletal pain intensity measured on       |
| 463 |     | a numerical rating scale. Eur J Pain. 2004;8(4):283-291.                      |
| 464 | 20. | Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J      |
| 465 |     | Bone Joint Surg Am. 2003;85-A Suppl 2(Supplement 2):58-69.                    |
| 466 | 21. | Bum Park Y, Ah Choi W, Kim YK, Chul Lee S, Hae Lee J. Accuracy of             |
| 467 |     | blind versus ultrasound-guided suprapatellar bursal injection. J Clin         |
| 468 |     | Ultrasound. 2012;40(1):20-25.                                                 |
| 469 | 22. | Prophet E, Mills B, Arrington J, Sobin L. Metodos Histotecnologicos:          |
| 470 |     | Versión en castellano editada y traducida por: Clara Heffes MD y Florabel     |
| 471 |     | G Mullick MD. Washington, D.C. : Armed Forces Institute of Pathology          |
| 472 |     | 1995.                                                                         |
| 473 | 23. | Raub CB, Hsu SC, Chan EF, Shirazi R, Chen AC, Chnari E, Semler EJ,            |
| 474 |     | Sah RL. Microstructural remodeling of articular cartilage following defect    |

| 475 |     | repair by osteochondral autograft transfer. Osteoarthritis Cartilage.       |
|-----|-----|-----------------------------------------------------------------------------|
| 476 |     | 2013;21(6):860-868.                                                         |
| 477 | 24. | Fleiss JL. Measuring nominal scale agreement among many raters.             |
| 478 |     | Psychological Bulletin. 1971;76(5):378-382.                                 |
| 479 | 25. | Bardos T, Varncsodi J, Farkas B, Fazekas A, Nagy SA, Bogner P, Vermes       |
| 480 |     | C, Than P. Pilot Study of Cartilage Repair in the Knee Joint with Multiply  |
| 481 |     | Incised Chondral Allograft. Cartilage. 2015;6(2):73-81.                     |
| 482 | 26. | Getgood A, McNamara I, Kili S, Bhullar T, Henson F. Reduced                 |
| 483 |     | chondrocyte viability is associated with the use of surgical marker pen ink |
| 484 |     | Am J Sports Med 2011;39(6):1270-1274.                                       |
| 485 | 27. | Reichenbach S, Rutjes WW, Nuesch E, Trelle S, Juni P. Joint lavage for      |
| 486 |     | osteoarthritis of the knee. Cochrane Database Syst Rev 2010; (5)            |
| 487 |     | pCD007320                                                                   |
| 488 | 28. | Health-Quality-Ontario. Arthroscopic lavage and debridement for             |
| 489 |     | osteoarthritis of the knee: an evidence-based analysis. Ont Health          |
| 490 |     | Technology Assess Ser. 2005;5(12):1-37.                                     |
| 491 | 29. | Reeves KD, Topol GA, Fullerton BD. Evidence-based regenerative              |
| 492 |     | injection therapy (prolotherapy) in sports medicine. In: Seidelberg PH,     |
| 493 |     | Beutler PL, eds. The Sports Medicine Resource Manual. Philadelphia:         |
| 494 |     | Saunders (Elsevier); 2008:611-619.                                          |
| 495 | 30. | Jensen KT, Rabago D, Best TM, Patterson JJ, Vanderby R. Longer term         |
| 496 |     | response of knee ligaments to prolotherapy in a rat injury model. Am J      |
| 497 |     | Sports Med. 2008;36:1347-1357.                                              |

| 498 | 31. | Yoshii Y, Zhao C, Schmelzer JD, Low PA, An KN, Amadio PC. The effects      |
|-----|-----|----------------------------------------------------------------------------|
| 499 |     | of hypertonic dextrose injection on connective tissue and nerve conduction |
| 500 |     | through the rabbit carpal tunnel. Arch Phys Med Rehabil. 2009;90(2):333-   |
| 501 |     | 339.                                                                       |
| 502 | 32. | Yoshii Y, Zhao C, Schmelzer JD, Low PA, An KN, Amadio PC. Effects of       |
| 503 |     | multiple injections of hypertonic dextrose in the rabbit carpal tunnel: a  |
| 504 |     | potential model of carpal tunnel syndrome development. Hand (N Y).         |
| 505 |     | 2014;9(1):52-57.                                                           |
| 506 | 33. | Ryan M, Wong A, Taunton J. Favorable outcomes after sonographically        |
| 507 |     | guided intratendinous injection of hyperosmolar dextrose for chronic       |
| 508 |     | insertional and midportion Achilles tendinosis. Am J Roentgenol.           |
| 509 |     | 2010;194(4):1047-1053.                                                     |
| 510 | 34. | Ryan M, Wong A, Rabago D, Lee K, Taunton J. Ultrasound-guided              |
| 511 |     | injections of hyperosmolar dextrose for overuse patellar tendinopathy: a   |
| 512 |     | pilot study. Br J Sports Med. 2011;45(12):972-977.                         |
| 513 | 35. | Maniquis-Smigel L, Reeves KD, Lyftogt J, Rabago D. Analgesic Effect of     |
| 514 |     | Caudal 5% Dextrose in Water in Chronic Low Back Pain (Abs) Arch Phys       |
| 515 |     | Med Rehabil. 2015;96(10):e103.                                             |
| 516 | 36. | Bertrand H, Kyriazis M, Reeves KD, Lyftogt J, Rabago D. Topical Mannitol   |
| 517 |     | Reduces Capsaicin-induced Pain: Results of a Pilot Level, Double-Blind     |
| 518 |     | Randomized Controlled Trial. PM&R. 2015;7(11):1111-1117.                   |

| 519 | 37. | Mobasheri A. Glucose: an energy currency and structural precursor in        |
|-----|-----|-----------------------------------------------------------------------------|
| 520 |     | articular cartilage and bone with emerging roles as an extracellular        |
| 521 |     | signaling molecule and metabolic regulator. Front Endocrinol. 2012;3:153.   |
| 522 | 38. | Hong YH, Park CW, Kim HS, Won KC, Kim YW, Lee CK. Effects of                |
| 523 |     | hypoxia/ischemia on catabolic mediators of cartilage in a human             |
| 524 |     | chondrocyte, SW1353. Biochemical and biophysical research                   |
| 525 |     | communications. 2013;431(3):478-483.                                        |
| 526 | 39. | Oswald ES, Ahmed HS, Kramer SP, Bulinski JC, Ateshian GA, Hung CT.          |
| 527 |     | Effects of hypertonic (NaCl) two-dimensional and three-dimensional          |
| 528 |     | culture conditions on the properties of cartilage tissue engineered from an |
| 529 |     | expanded mature bovine chondrocyte source. Tissue Eng Part C                |
| 530 |     | Methods. 2011;17(11):1041-1049.                                             |
| 531 | 40. | Bertram KL, Krawetz RJ. Osmolarity regulates chondrogenic                   |
| 532 |     | differentiation potential of synovial fluid derived mesenchymal progenitor  |
| 533 |     | cells. Biochemical and biophysical research communications.                 |
| 534 |     | 2012;422(3):455-461.                                                        |
| 535 | 41. | Shanfield S, Campbell P, Baumgarten M, Bloebaum R, Sarmiento A.             |
| 536 |     | Synovial fluid osmolality in osteoarthritis and rheumatoid arthritis. Clin  |
| 537 |     | Orthop Relat Res. 1988;235(235):289-295.                                    |
| 538 | 42. | Rosa SC, Rufino AT, Judas FM, Tenreiro CM, Lopes MC, Mendes AF.             |
| 539 |     | Role of glucose as a modulator of anabolic and catabolic gene expression    |
| 540 |     | in normal and osteoarthritic human chondrocytes. J Cell Biochem             |
| 541 |     | 2011;112(10):2813-2824.                                                     |

| 542 | 43. | Cigan AD, Nims RJ, Albro MB, Esau JD, Dreyer MP, Vunjak-Novakovic G,        |
|-----|-----|-----------------------------------------------------------------------------|
| 543 |     | Hung CT, Ateshian GA. Insulin, ascorbate, and glucose have a much           |
| 544 |     | greater influence than transferrin and selenous acid on the in vitro growth |
| 545 |     | of engineered cartilage in chondrogenic media. Tissue Eng Part A.           |
| 546 |     | 2013;19(17-18):1941-1948.                                                   |
| 547 | 44. | D'Lima DD. D'Lima DD. Glucose concentration increases IGF expression        |
| 548 |     | from human synovial membrane, Technical Report, August 17. 2009;            |
| 549 |     | http://www.aaomed.org/Scripps-Report-Glucose-effect-on-Synovial-tissue-     |
| 550 |     | IGF-expression.                                                             |
| 551 | 45. | Kurth TB, Dell'accio F, Crouch V, Augello A, Sharpe PT, De Bari C.          |
| 552 |     | Functional mesenchymal stem cell niches in adult mouse knee joint           |
| 553 |     | synovium in vivo. Arthritis Rheum. 2011;63(5):1289-1300.                    |
| 554 | 46. | Hunziker EB, Rosenberg LC. Repair of partial-thickness defects in           |
| 555 |     | articular cartilage: cell recruitment from the synovial membrane. J Bone    |
| 556 |     | Joint Surg Am. 1996;78(5):721-733.                                          |
| 557 | 47. | Hunziker EB. Growth-factor-induced healing of partial-thickness defects in  |
| 558 |     | adult articular cartilage. Osteoarthritis Cartilage. 2001;9(1):22-32.       |
| 559 | 48. | De Bari C, Dell'accio F, Tylzanowski P, Luyten FP. Multipotent              |
| 560 |     | mesenchymal stem cells from adult human synovial membrane. Arthritis        |
| 561 |     | Rheum. 2001;44(1928-1942).                                                  |
| 562 | 49. | Zhang D, Johnson LJ, H.P. H, M. S. Cartilaginous deposits in subchondral    |
| 563 |     | bone in regions of exposed bone in osteoarthritis of the human knee:        |

| 564 | histomorphometric study of PRG4 distribution in osteoarthritic cartilage. J                        |
|-----|----------------------------------------------------------------------------------------------------|
| 565 | Orthop Res. 2007;25(7):873-883.                                                                    |
| 566 |                                                                                                    |
| 567 |                                                                                                    |
| 568 |                                                                                                    |
| 569 | Table and Figure Legends                                                                           |
| 570 |                                                                                                    |
| 572 | Table 1: Baseline Participant Characteristics                                                      |
| 573 | <sup>a</sup> IR = Interquartile range                                                              |
| 574 | <sup>b</sup> Percentage does not sum to 100 due to participants' varied use of conventional        |
| 575 | therapies.                                                                                         |
| 576 | <sup>c</sup> 100 point WOMAC                                                                       |
| 577 | Table 2: Median Baseline and Change in WOMAC Scores, NRS pain and                                  |
| 578 | flexibility                                                                                        |
| 579 | <sup>a</sup> Time until 2 <sup>nd</sup> arthroscopy. Values obtained in week prior to arthroscopy. |
| 580 | <sup>b</sup> Significance (p-value) is reported compared to baseline status.                       |
| 581 | <sup>c</sup> IR = Interquartile range.                                                             |
| 582 | Figure 1: Enrollment of Participants and Completion of the Study                                   |
| 583 | Legend 1: Eligibility and exclusion criteria, grade IV change on ultrasound of the                 |
| 584 | medial femoral condyle and analgesia with lidocaine injection were required for                    |
| 585 | candidacy. Methylene blue straining was used to visualize cartilage cells. Video                   |
| 586 | recordings of the entire medial condyle were performed in a fixed sequence both                    |
| 587 | before and after treatment. A biopsy was obtained of an area of visible growth                     |

- 588 during the second arthroscopy. Changes in pain, flexibility, cartilage status,
- 589 histology, and Immunohistology were followed.

#### 590 Figure 2: Areas of Cartilage Growth on the Medial Femoral Condyle

- 591 Legend 2: Left image shows the entire medial condylar surface of the left knee
- 592 divided into 9 sections (A-I) per International Cartilage Research Society (ICRS)
- 593 guidelines<sup>28</sup>. A cutout area is shown. A fraction is seen in each of the sections in
- the right side magnified image. The denominator of each fraction is 6, the
- 595 number of knees evaluated arthroscopically before and after treatment. The
- 596 numerator is the number of knees that showed growth as agreed upon by all
- 597 three arthroscopists.

## 598 Figure 3: Baseline Femoral Condyle ultrasound and AP and Lateral X-rays.

- 599 Legend 3: The left column is an ultrasound image of the medial femoral condyle
- 600 showing at least focal full thickness loss of cartilage. AP radiographs were taken
- in maximum extension with beam direction at joint height. Lateral compartments
- 602 were consistent with multicompartmental involvement.

# 603 Figure 4: Arthroscopic Confirmation of Biopsy from an Area of Cartilage604 Growth

Legend 4: The darkened area in column one for each subject indicates the
section from which the biopsy was taken for each subject. A still photograph of
the area from which the biopsy was taken is shown from the first arthroscopy in
column two and at the time of the post treatment arthroscopy (column three).
Column four shows the area of biopsy within the red box and column five shows
the biopsy defect.

611 Figure 5: Safranin-O and H&E Stains, Quantitative Polarized Light

## 612 Microscopy, and Immunohistology for Cartilage Type of Biopsy Specimens.

- 613 Legend 5: The normal positive uptake controls for immunohistologic stain for
- 614 fibrocartilage and hyaline cartilage, respectively, were the perichondral (fibrous)
- 615 region of nasal septal cartilage discarded at the time of routine nasal septal
- 616 surgery and normal femoral condyle cartilage (cadaveric). An IgG stain of the
- 617 same normal femoral condyle cadaver cartilage served as the negative control,
- 618 since IgG will not be taken up by normal cartilage.
- 619

| Table 1: Baseline Participant (n=6) Characteristics |            |  |  |
|-----------------------------------------------------|------------|--|--|
| Female, n (%)                                       | 2 (40%)    |  |  |
| Age, years, median (IR) <sup>a</sup>                | 71 (15)    |  |  |
| Duration of Knee Pain, years,                       | 9.6 (10.8) |  |  |
| median (IR)                                         |            |  |  |
| BMI, n (%)                                          | <u>A</u>   |  |  |
| ≤25                                                 | 2 (33%)    |  |  |
| 26-30                                               | 3 (50%)    |  |  |
| 31+                                                 | 1 (17%)    |  |  |
| Prior Knee Intervention, n (%) <sup>b</sup>         |            |  |  |
| Physical Therapy                                    | 6 (100%)   |  |  |
| Hyaluronic acid injection                           | 1 (17%)    |  |  |
| Corticosteroid injection                            | 3 (50%)    |  |  |
| Arthroscopic surgery                                | 0 (0%)     |  |  |
| WOMAC <sup>c</sup> median points (IR)               |            |  |  |
| Composite                                           | 57.5 (8)   |  |  |
| Pain                                                | 57 (7)     |  |  |
| Stiffness                                           | 57.5 (9)   |  |  |
| Function                                            | 58 (8)     |  |  |
| NRS pain, median (IR)                               | 8.5 (3.25) |  |  |
| Flexibility                                         |            |  |  |
| Flexion Range, median, (IR)                         | 112.5 (22) |  |  |

| Extension Deficit, median (IR) | 7.5 (11) |
|--------------------------------|----------|
|                                |          |

<sup>a</sup> IR = Interquartile range

<sup>b</sup> Percentage does not sum to 100 due to participants' varied use of conventional therapies.

<sup>c</sup> 100 point WOMAC

| Table 2. Median Baseline and Change in WOMAC Scores, NRS pain and flexibility |                            |                                                                                 |                      |
|-------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------|----------------------|
| Measure                                                                       | Baseline<br>Score<br>(n=6) | Improvement to a<br>median 7.75 (Range 4.5<br>to 9.5 months) <sup>a</sup> (n=6) | P-Value <sup>b</sup> |
| WOMAC Composite Score, median (IR) <sup>c</sup>                               | 57.5 (8.0)                 | -13 (22)                                                                        | .013                 |
| WOMAC Subscale Scores, median (IR)                                            |                            |                                                                                 |                      |
| Pain                                                                          | 57 (7.0)                   | -14 (21.0)                                                                      | .010                 |
| Stiffness                                                                     | 57.5 (9.0)                 | -12.5 (23)                                                                      | .017                 |
| Function                                                                      | 58 (8.0)                   | -13.5 (23)                                                                      | .015                 |
| NRS (0-10) Pain With Walking, median (IR)                                     | 8.5 (3.25)                 | -3.7 (3.0)                                                                      | .013                 |
| Flexion Range, median (IR)                                                    | 112.5 (22)                 | +7.5 (13)                                                                       | .034                 |
| Extension Deficit, median (IR)                                                | 7.5 (11)                   | -2.5 (7)                                                                        | .086                 |

<sup>a</sup> Time until 2<sup>nd</sup> arthroscopy. Values obtained in week prior to arthroscopy.

<sup>b</sup> Significance (p-value) is reported compared to baseline status.

<sup>c</sup> IR = Interquartile range.

What have a second seco





CHR HAN

|                      | Screening<br>Ultrasound | Screening<br>AP X-Ray | Screening<br>Lat X-Ray |   |
|----------------------|-------------------------|-----------------------|------------------------|---|
| Participant<br>One   |                         |                       |                        |   |
| Participant<br>Two   | C                       |                       | 2.20                   | R |
| Participant<br>Three |                         |                       |                        | 3 |
| Participant<br>Four  |                         |                       | 5                      |   |
| Participant<br>Five  | K                       |                       |                        |   |
| Participant<br>Six   | K                       | F                     | -                      |   |
|                      |                         |                       |                        | = |

|                      | Biopsy<br>Zone | Pre<br>Treatment          | Post<br>Treatment | Biopsy<br>Site | Biopsy<br>Defect |
|----------------------|----------------|---------------------------|-------------------|----------------|------------------|
| Participant<br>One   |                | - Zare 1<br>Advertisement | al y              | 1              | 1                |
| Participant<br>Two   |                |                           | E I               |                | 1                |
| Participant<br>Three |                |                           | A.S               | 0              |                  |
| Participant<br>Four  |                |                           |                   |                | Ser.             |
| Participant<br>Five  |                | Annex                     | A REAL            | Ø              |                  |
| Participant<br>Six   |                |                           |                   | -              |                  |

|                                | Safranin-O<br>Stain | H&E<br>Stain | Quantitative<br>Pol. Light                | Type I<br>IH Stain           | Type II<br>IH Stain |
|--------------------------------|---------------------|--------------|-------------------------------------------|------------------------------|---------------------|
| Control                        |                     |              | High<br>Paratietism<br>Low<br>Paratietism | Pos Neg<br>100 μm            | Ров Neg<br>100 µm   |
| Participant<br>On <del>e</del> |                     | 20X          | 250 µm                                    | 25 <u>0 µ</u> m              | 2 <u>50 µ</u> m     |
| Participant<br>Two             | 10X                 | 20%          | 250 µm                                    | 25 <u>0 µ</u> m              | 2 <u>50 µ</u> m     |
| Participant<br>Three           | 10X                 | 40X          | 250 jum                                   | ' 250 μm                     | * 2 <u>50 µ</u> m   |
| Participant<br>Four            | 10X                 | 20X          | 250 µm                                    | 250 μm                       | 250 µm              |
| Participant<br>Five            | 10.2                | 20X          | 250 µm                                    | 25 <u>0 µ</u> m              | 2 <u>50 µ</u> m     |
| Participant<br>Six             | 20X                 | 20X          | 250 µm                                    | <mark>^ 2<u>50</u> µm</mark> | 2 <u>50 µ</u> m     |