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Temporomandibular joint osteoarthritis (TMJ OA) is a degenerative disease, characterized by progressive cartilage degradation,
subchondral bone remodeling, synovitis, and chronic pain. Due to the limited self-healing capacity in condylar cartilage,
traditional clinical treatments have limited symptom-modifying and structure-modifying effects to restore impaired cartilage as
well as other TMJ tissues. In recent years, stem cell-based therapy has raised much attention as an alternative approach towards
tissue repair and regeneration. Mesenchymal stem cells (MSCs), derived from the bone marrow, synovium, and even umbilical
cord, play a role as seed cells for the cartilage regeneration of TMJ OA. MSCs possess multilineage differentiation potential,
including chondrogenic differentiation as well as osteogenic differentiation. In addition, the trophic modulations of MSCs exert
anti-inflammatory and immunomodulatory effects under aberrant conditions. Furthermore, MSCs combined with appropriate
scaffolds can form cartilaginous or even osseous compartments to repair damaged tissue and impaired function of TMJ. In this
review, we will briefly discuss the pathogenesis of cartilage degeneration in TMJ OA and emphasize the potential sources of
MSCs and novel approaches for the cartilage regeneration of TMJ OA, particularly focusing on the MSC-based therapy and
tissue engineering.

1. Introduction

The temporomandibular joint (TMJ) is a hinge and gliding
joint that connects the mandibular condyle with the temporal
articular surface. It is one of the most frequently used joints
in the human body [1]. Osteoarthritis (OA) is a group of
degenerative diseases primarily affecting the joint, character-
ized by progressive cartilage degradation, subchondral bone
remodeling, synovitis, and chronic pain [2, 3]. Osteoarthritis
that happened in TMJ often involves degenerations of both
hard and soft tissues of TMJ, and patients with TMJ OA
usually have joint pain and dysfunction with reduced quality
of life. It is estimated that approximately 15% of populations
in the world suffer fromOA [4]. Epidemiologic studies on the
prevalence of TMJ OA differ due to variations in diagnostic
criteria, and clinical evidence occurs in 8–16% of populations

with symptoms of joint pain, limited occlusion motion, or
TMJ sound [5]. Moreover, women have increased suscep-
tibility to the initiation of TMJ OA and induced pain,
which occurs mainly after puberty during the reproductive
years [6].

The pathogenesis and underlying molecular mechanisms
involved in TMJ OA development remain elusive and largely
understudied [7, 8]. The treatment strategy for TMJ OA aims
at preventing the progressive destruction of cartilage and the
subchondral bone, relieving joint pain and restoring TMJ
function. The traditional clinical treatments mainly include
nonsurgical options, such as physical therapies, occlusal
splints, nonsteroidal anti-inflammatory drugs (NSAIDs),
and arthrocentesis [9, 10], while surgical intervention is
applied to patients with severe symptoms. Although those
abovementioned treatments can prevent disease progression
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to a certain degree, they are unable to completely restore
degraded cartilage or subchondral bone lesions, as well as
disc deteriorations.

Recent years, stem cell-based therapy has aroused a great
attention. As a subpopulation of stem cells, mesenchymal
stem cells (MSCs) have become vital seed cells for tissue
regeneration due to their easy obtainment and multilineage
differentiation potential. In addition, the trophic modula-
tions of MSCs exert a biologic function in injured tissues
and inflammatory diseases [11, 12]. Combined with
appropriate scaffolds via transplantation in vivo, MSCs could
restore tissue impairments to form cartilaginous or even
osseous compartment in TMJ OA animal models [13, 14].
All these data indicate the capacity of MSCs for the cartilage
regeneration in TMJ OA disease.

In this review, we will briefly summarize the pathogenesis
of TMJ OA and emphasize the potential of novel approaches
for the cartilage regeneration of TMJ OA, particularly focus-
ing on the MSC-based therapy.

2. Pathogenesis of Cartilage Degeneration in
TMJ OA

TMJ OA is a highly prevalent degenerative disease affecting
articular cartilage as well as other TMJ tissues under
pathological conditions and aging process [5]. TMJ condylar
cartilage is an avascular, compressible tissue comprised of
dense collagen fibres and extracellular proteoglycans, which
protect the joint from damage during mechanical loading.
The collagen fibres are mainly composed of type I and type
II collagen (Col1/Col2) and are well organized to align in
an anteroposterior orientation for the resistance to shear
stress [15–17]. Chondrocytes embedded in the condylar
cartilage are generally separately localized into three layers.
Cells in the superficial and middle layers are considered to
be progenitor cells with high proliferation capability and dif-
ferentiation potential. Descending to the deep layer, chon-
drocytes undergo terminal differentiation with enlarged,
swollen, and vacuolated morphology leading to apoptosis
process. Since TMJ OA is a multifactorial disorder [18],
understanding of the pathogenesis of cartilage degeneration
in TMJ OA could help to identify potential therapeutic
targets and interventions.

2.1. Chondrocyte Apoptosis. During TMJ OA progression,
articular chondrocytes with low metabolism usually in
advance undergo hypertrophy and apoptosis, accompanied
with cartilage fibrillation and progressive loss. In cultured
TMJ-derived chondrocytes, oxidative stress induced by
H2O2 could elevate intracellular reactive oxygen species
(ROS) and subsequently induce chondrocyte apoptosis and
function impairment [19]. Intra-articular injection of mono-
sodium iodoacetate (MIA) can effectively induce TMJ OA-
like phenotype in rats and chondrocyte apoptosis as the most
apparent characteristic in cartilage was observed starting
from the early stage [20]. Surgical malocclusion induction
in another TMJ OA rat models increased chondrocyte
autophagy with a reduced activity of mitogen-activated
protein kinase kinase kinase kinase-3 (MAP4K3) and

mammalian target of rapamycin (mTOR) [21]. Moreover,
chondrocyte apoptosis was also illustrated in the initiation
stage of TMJ OA in a senescence-accelerated mouse model
[22]. Collectively, all these data elucidated the involvement
of chondrocyte apoptosis during the initiation and progres-
sion of TMJ OA.

2.2. Catabolic Enzymes. In adult healthy cartilage, chondro-
cytes are in a quiescent state characterized by a fine balance
between anabolic and catabolic activities. However, during
the disease progression, the condylar chondrocytes demon-
strate the progressively decreased synthesis of anabolic
components, such as Col2 and aggrecan, the upregulated
expression of hypertrophic marker genes, such as Runx2
and ColX, and the increased catabolic enzymes synthesis,
such as matrix metalloproteinases (MMPs) [23] and a disin-
tegrin and metalloproteinase with thrombospondin motifs
(ADAMTS) [24].

The MMPs belong to a family of proteases and function
to degrade extracellular matrix proteins. Among these,
MMP-13 is the most important catabolic enzymes involved
in cartilage degradation during TMJ OA development. Stud-
ies have detected a higher expression of MMP-13 in late-
stage OA patients compared with these in the early stage with
a lower disease degree [25]. In addition, overexpression of
Mmp-13 in transgenic mice has led to degenerative cartilage
with excessive Col2 cleavage and aggrecan degradation [23].
Furthermore, mice with the knockout of Mmp-13 rescued
surgically induced OA phenotype in knee joint, indicating
that the cartilage damage in OA mice model is dependent
on MMP-13 activity [26].

The ADAMTS family, particularly ADAMTS4 and
ADAMTS5, contributes to the proteoglycan/aggrecan degra-
dation during TMJ arthritis [27]. Inhibition of these enzymes
in cultured chondrocytes effectively reduced aggrecan
degradation in vitro [28]. The ablation of Adamts5 activity
in transgenic mice prevented aggrecan loss and cartilage
erosion in inflammation-induced OA models [29]. Similarly,
in surgically induced OA mice models, depletion of Adamts5
or double knockout of both Adamts4 and Adamts5 protected
against proteoglycan degradation in vitro and decreased the
severity of OA progression [30]. Besides, in genetic TMJ
OA mouse models, such as β-catenin(ex3)Co12ER mice, res-
cue effects were also observed by deletion of the either the
Mmp-13 or Adamts5 gene [31]. All these evidence suggest
that the catabolic enzymes play a key role in the development
of TMJ OA.

2.3. Subchondral Bone Remodeling. The abnormal remodel-
ing of the subchondral bone is another pathogenic change
contributed to OA in TMJ. Recent studies revealed the inter-
action between chondrocyte and adjacent osteoclast or
osteoblast to regulate the bone-remodeling process [32]. In
Camurati-Engelman disease (CED) mice with the systemic
skeletal disease, the activated TGF-β signals in the bone mar-
row developed phenotypes of abnormal bone remodeling, as
well as obvious cartilage degradation accompanied by an
upregulation of Mmp-9 and Mmp-13 in condylar chondro-
cytes [33–35]. Besides, several lines of evidence suggested
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that chondrocytes can regulate bone remodeling via RANKL/
osteoprotegerin (OPG) signaling. A thinner articular carti-
lage layer with severe destruction of growth plate cartilage
was observed in OPG-deficient mice, indicating that OPG
is related to the regulation of cartilage metabolism [36].
Moreover, articular chondrocytes can produce both RANKL
and OPG proteins, and different RANKL/OPG ratios may
adjust cartilage degradation and subchondral bone remodel-
ing in OA [37, 38]. In malocclusion-induced TMJ OA
models, the loss of subchondral bone was observed after 12
weeks, followed by increased expression of osteoclastic
factors, such as M-CSF, VEGF, and RUNX, as well as the
upregulated RANKL/OPG ratio [37]. To mimic OA environ-
ment in vivo, articular chondrocytes were cocultured with
peripheral blood mononuclear cells (PBMCs) in vitro. Chon-
drocytes under the prostaglandin E2 (PGE2) stimulation
paracrine secreted RANKL protein to induce osteoclastic
activity of monocytes [39]. On the contrary, the β-cateni-
n(ex3)Col2CreER mice developed an OA-like phenotype in
the knee joint characterized by subchondral bone erosion
and osteophyte formation. The activation of β-catenin
signals in chondrocytes produced OPG protein to further
inhibit osteoclast differentiation by completely binding with
RANK on the osteoclasts [40]. Further investigations are
needed to elucidate mechanisms governing the interactions
between chondrocytes and local bone remodeling; nonethe-
less, chondrocytes are demonstrated to serve as a link with
bone changes in the OA-related process.

Apart from chondrocytes, other pathogenic factors, such
as immune cells, cytokines, and hormones, lead to the path-
ogenic changes in the subchondral bone. Increasing evidence
has demonstrated that synovium inflammation is involved in
the progression of OA and associated with joint pain and
dysfunction [41, 42]. Various types of immune cells are infil-
trated in the inflamed synovium of OA patients. Among
these, macrophages are the most abundant cells present in
the synovial tissue [43, 44]. In a surgery-induced OA mouse
model by intra-articular injections of collagenase into joints,
synovial lining macrophages are shown to play a pivotal role
in mediating the osteophyte formation during the progres-
sion of OA [45]. In cultured synovial cells derived from OA
patients, synovial macrophages were specifically depleted
from digested synovium using anti-CD14-conjugated
magnetic beads. The macrophage depletion resulted in the
downregulation of proinflammatory cytokines, such as inter-
leukin- (IL-) 6 and IL-8 and MMPs, such as MMP-1 and
MMP-3, and it indicated the important role of macrophages
in promoting the production of inflammatory and degrada-
tive mediators in the OA synovium [46]. Some other studies
provided clues about the inhibitory influence on the chon-
drogenic differentiation of MSCs under the activation of
synovial macrophages [47, 48]. Despite the abundance of
macrophages, natural killer cells have also been isolated from
synovial tissues of OA patients; however, the mechanism
involved in the pathogenesis needs to be further elucidated
in detail [49].

Along with the infiltration of immune cells, inflamma-
tory cytokines are isolated from the inflamed synovial fluid
of patients with TMJ OA, such as IL-1β and tumor necrosis

factor- (TNF-) α [50, 51]. In the experimental chronic
inflammation of rodent TMJ induced by intra-articular
injections of complete Freund’s adjuvant, increased expres-
sions of IL-1β and TNF-α were detected and supposed to
be one cause for the TMJ degenerative changes [52].
Although the administration of TNF inhibitors did not
show significant improvement in radiographic scores of
patients, individuals have some benefits on joint pain relief
and the trends suggested possible targets for the interven-
tion of OA [53]. What is more is that several other cyto-
kines, such as IL-6, have also been shown to be implicated
in the progression of TMJ OA [51].

Females especially during the reproductive period have
susceptibility to the occurrence of TMJ OA, suggesting that
female hormones have a possible involvement in the patho-
logic changes of condylar cartilage and the subchondral bone.
In an iodoacetate-induced TMJ OA rat model, estrogen can
aggravate the disease progression by upregulating Fas- and
caspase 3-related proapoptotic genes [54]. On the contrary,
estrogen could inhibit the expression of nitric oxide to pro-
tect TMJ chondrocyte from apoptosis [55]. Thus, the role
of estrogen in TMJ OA progression is with controversy and
needed more investigations.

3. Mesenchymal Stem Cell-Based Therapy for
Cartilage Regeneration of TMJ OA

The treatment for TMJ OA focuses on preventing the
destruction of cartilage and subchondral bone, relieving pain,
and eventually restoring TMJ function. There are different
treatment strategies according to clinical stages of TMJ
degeneration, including noninvasive options, such as physi-
cal therapies, occlusal splints, NSAIDs, arthrocentesis [9],
and surgical intervention, such as joint replacement [56].
Although all these therapies have symptom-modifying and/
or structure-modifying effects to some extent, they rarely
reverse the disease process to restore the degenerative carti-
lage and reestablish joint functions.

In recent years, stem cells have been extensively applied
to fields of tissue engineering and regenerative medicine
[57–59], mainly due to their self-renewal ability and multiple
differentiation potentials. Among alternative cell sources for
OA treatment, MSCs have raised particular concerns to play
a role of seed cells, based on their ease of collection, the
potential of chondrogenic differentiation, response to tissue
damage, and contributions to tissue turnover. Therefore,
extensive progress has been made in the investigation of dif-
ferentiation potentials and functional modulations of MSCs
for cartilage regeneration in TMJ OA treatment.

3.1. Potential of Mesenchymal Stem Cells. MSCs have been
identified from various tissues, such as skeletal muscle
[60], adipose tissue [61], the placenta [62], the bone
[63], the deciduous teeth [64], and the synovium [65].
As the most widely studied sources of MSCs for cartilage
regeneration, bone marrow-derived MSCs, synovium-
derived MSCs, and umbilical cord-derived MSCs are
mainly discussed below.
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3.1.1. Bone Marrow-Derived MSCs. MSCs were first identi-
fied in the bone marrow via the formation of colonies, repre-
sented as colony-forming unit fibroblasts (CFU-F) [66], and
bone marrow-derived MSCs (BMSCs) have multilineage
differentiation potentials [63], including chondrogenic and
osteogenic differentiation.

Studies found that cultured BMSCs preconditioned in
osteogenic and chondrogenic media in vitro can form bone-
like and cartilage-like structures, respectively, mimicking a
primordial joint-like structure when seeded in opposite por-
tions of a hyperhydrated collagen gel via ultrarapid tissue
engineering techniques [67]. Some clinical trials have
proposed the approaches for OA treatment, which involve
the intra-articular injection to deliver BMSCs directly into
the synovial fluid compartment [68]. Although most clinical
trials participated in the intervention of OA in knee joints,
studies on the cartilage regeneration of BMSCs in TMJ OA
have been largely investigated. Chen et al. [69] conducted
intra-articular injections of both undifferentiated and pre-
chondrogenic differentiated BMSCs for cartilage regenera-
tion in TMJ OA rabbit models. They also compared that
the differentiated MSC-treated group gained better histolog-
ical scores than the undifferentiated MSC-treated group at an
observation period of 4 and 12 weeks, along with decreased
expression of MMP-13 and upregulation of Sox9, Col2, and
aggrecan. However, the rescue effect displayed no difference
in both groups until 24 weeks. Collectively, local delivery of
chondrogenic differentiated BMSCs may enhance the regen-
erative process of cartilage repair at the early stage of TMJ
OA through key mediators involved in chondrogenesis. In
addition, the implanted cells could be traced by the label of
adenoviral vectors containing the LacZ gene, and implanted
MSCs were detected within cartilage, subchondral bone,
and synovium lasting at least 4 weeks, indicating the involve-
ment of BMSCs in the cartilage repair [69].

Although predifferentiated BMSCs appear to enhance the
cartilage regeneration, they do not maintain their prolifera-
tive capability and differentiation potentials after prolonged
expansion in vitro [70]. In order to attain a better therapeutic
outcome, applicable strategies of pretreatment and/or pre-
conditioning of BMSCs are essential to improve long-term
effect in OA. Further studies have proved that pretreatment
of BMSCs with fibroblast growth factor-2 (FGF-2) [71] and
hypoxic preconditioning of BMSCs [72] are two attractive
approaches to enhance cell proliferation and chondro-
genic differentiation. Whether there are other biophysical
approaches needs more investigations to expand the applica-
tions of BMSCs in cell-based treatment. Therefore, BMSCs
provide an alternative approach for cartilage regeneration;
meanwhile, a better application of TMJ OA treatment could
be achieved with the pretreatment of BMSCs.

3.1.2. Synovium-Derived MSCs. A number of studies have
isolated cells from synovial fluid and synovium in TMJ
[73–75], which are able to differentiate into different lineages,
such as osteoblasts, chondrocytes, adipocytes, and neurons
[73, 76]. These synovium-derived MSCs express MSC
markers such as CD90, CD105, and CD73 and negatively
express CD11b, CD19, CD34, CD45, and HLA-DR [75],

compliant with the widely adopted criteria stipulated by the
International Society for Cellular Therapy (ISCT) [77]. Com-
pared with MSCs from other tissues, synovium-derived
MSCs possess a greater proliferative rate and superior chon-
drogenic differentiation potential [78–80]. Particularly, the
combination treatment of TGF-βs, dexamethasone, and
BMP-2 became the optimum for chondrogenic differentia-
tion of synovium-derived MSCs in vitro [81]. Based on the
properties mentioned above, synovium-derived MSCs have
been utilized to test the chondrogenic potential for cartilage
repair in animal models. In rabbit OA models with defects
in whole cartilage layers, synovium-derived MSCs were
embedded in collagen gel and transplanted into the injury
site. The cartilage defects were repaired with productions of
cartilage matrix [82]. The in vivo chondrogenic differentia-
tion of synovium-derived MSCs on cartilage repair have been
reported in many other studies [83, 84], leading to a general
acceptance that synovium-derived MSCs have the ability to
repair cartilage defects to some extent.

The perforation of TMJ disc tissue is usually happening
in the late stage of TMJ OA, leading to severe degeneration
of condylar cartilage. The application of synovium-derived
MSCs for the TMJ disc repair has aroused great attention.
A recent study [85] has cultured synovium-derived MSCs
on fibrin/chitosan hybrid scaffold under chondrogenic
induction combined with TGF-β3 in vitro. In order to evalu-
ate the in vivo repair ability, the construct was inserted into
the punched TMJ disc explants of rats, which can mimic
TMJ disc perforation in human. After 4 weeks of operation,
distinct fibrocartilage formation with deposition of Col1
and Col2 was observed at the implantation site. Thus,
synovium-derived MSCs are able to repair the defective
cartilage in TMJ disc.

3.1.3. Umbilical Cord-Derived MSCs.Apart from adult tissue-
derived MSCs, MSCs could also be isolated from the umbili-
cal cord (UC) [86, 87]. Compared with BMSCs, UC-derived
MSCs show a more similar gene expression profile to that
of embryonic stem cells [88]. They possess a faster prolifera-
tive rate and a larger number of CFU-F [89, 90]..The differen-
tiation capacity of UC-derived MSCs into adipogenic,
chondrogenic, and osteogenic lineages has been extensively
studied [87, 90]. For cartilage tissue engineering, UC-
derived MSCs and BMSCs embedded in the polyglycolic acid
(PGA) scaffolds and cultured under chondrogenic differenti-
ation medium in vitro. After 3 to 6 weeks, UC-derived MSCs
produced more glycosaminoglycans (GAGs) and Col1 than
BMSCs, indicating the superior capability of fibrochondro-
genesis of UC-derived MSCs [91]. Above all, UC-derived
MSCs might be an alternative cell source for the cartilage
regeneration.

3.2. Trophic Modulations of MSCs for Cartilage Tissue
Regeneration of TMJ. It is well known that MSCs are able to
secrete a broad range of bioactive molecules, such as growth
factors, cytokines, and chemokines, which constitutes their
biological role under injury conditions [92–94]. These
trophic factors produced in the MSC-conditioned medium
are collectively described as the MSC secretome. Various
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MSC-based clinical trials have revealed that transplanted
MSCs exert biological functions through trophic modula-
tions rather than differentiation potential [11, 12]. This par-
adigm shift in the use of MSC-based therapy is becoming a
hot issue attracting various studies for better applications to
tissue regeneration.

Although TMJ OA is classified as a “low-grade-
inflammatory arthritic condition” [9], the involvement of
inflammation has been concerned to play a role in disease
progression. Several inflammatory cytokines are increased
in the synovial fluid of TMJ OA patients, such as IL-12,
IL-1β, and TNF-α [51]. Also, the increased expressions
of IL-1β and TNF-α were detected in rat TMJ OA models.
Particularly, the biomechanical properties of TMJ discs
were significantly decreased and the disc ultrastructures
were impaired in rodent TMJ OA [52], implying that the
chronic inflammation in TMJ OA deteriorates the adaptive
ability of the joint. Since MSCs have been explored to
regenerate damaged tissue and treat inflammation in many
diseases, such as cardiovascular disease, neuron injury,
stroke, diabetes, and bone regeneration [95, 96], further
studies elucidated that the trophic factors secreted by
MSCs exert an anti-inflammatory effect. van Buul et al.
added TNF-α and interferon-γ (IFN-γ) to conditioned
medium of MSCs to mimic the inflammatory environment
of OA. It was found that the increased secretion of secre-
tome decreased expression of the inflammatory gene IL-1β
and collagenase genes Mmp-1 and Mmp-13 in response to
inflammation [97]. Besides, human BMSCs were intra-
articularly injected into rat’s knee joint after hemimenis-
cectomy [97]. Despite the rapid decrease of cell numbers,
the human BMSC injection enhanced Col2 expression in the
articular cartilage, associated with increased expression of
Indian hedgehog (Ihh), parathyroid hormone-like hormone
(PTHLH), and bone morphogenetic protein 2 (BMP2),
eventually contributing to the cartilage regeneration and inhi-
bition of OA progression [98]. Furthermore, the periodontal
ligament-derived MSCs could increase the cell proliferation
and matrix biosynthesis of cocultured TMJ-derived fibro-
chondrocytes through paracrine secretion of trophic factors
[99]. In addition, increased GAG deposition with enhanced
expression of chondrogenic genes, such as aggrecan, Col1,
and Col2, is also observed in this study.

As a component of secretome, exosomes are demon-
strated to play a key role in mediating tissue repair in MSC-
based therapy. Exosomes are cell-secreted nano-sized vesicles
covered by the bilipid membrane and containing a myriad of
regulatory components including microRNAs (miRNAs),
mRNAs, and proteins [100–102]. Exosomes can be synthe-
sized in many cells, such as lymphocytes, dendritic cells,
and tumor cells, and they are found in most bodily fluids
such as blood, urine, and saliva [103]. Diseased cells also
secret exosomes as vehicles to transmit injurious signals,
thereby exerting various pathological effects on both recipi-
ent and parent cells [104–106]. In MSC-based regenerative
therapy, exosomes are widely found in the secretome of
MSCs derived from the bone marrow [107, 108], fetal tissues
[109], and umbilical cord [110]. To isolate exosomes from
secretomes, the conventional culture medium is replaced by

medium containing exosome-depleted fetal bovine serum.
When BMSCs reach 60–80% confluence, cell culture media
are collected and density gradient centrifugations are per-
formed to obtain pellets containing exosomes. The pellets
are then passed through a 0.22μm filter to remove cell debris,
and the purified exosomes are obtained [108].

Although the role of the individual components of
exosome has not been elucidated, the combined functional
complexity of MSC exosomes has therapeutic effects on tis-
sue repair and regeneration in the heart [100], liver [111],
skin [112], bone [113], and cartilage [114]. In an experimen-
tal rat model with critical-sized osteochondral defects on
trochlear grooves of the distal femurs, human embryonic
MSC-derived exosomes were intra-articularly administrated
to investigate the efficacy of exosomes in osteochondral
repair. The results showed that over the 12-week period of
exosome injections, exosome-treated cartilage and subchon-
dral bone defects were completely restored, characterized
by the accelerated neotissue filling and enhanced matrix syn-
thesis of Col2 and sulphated GAG, while only fibrous repair
tissues were found in the PBS-treated defects [114]. A recent
study conducted the destabilization of medial meniscus
(DMM) surgery to induce OA in the knee joints of mice,
and the intra-articular injections of exosomes isolated from
embryonic MSC medium successfully impeded cartilage
destruction in the DMMmodel. Further in vitro studies using
cultured chondrocytes treated with IL-1β illustrated that
these exosomes maintained the chondrocyte phenotype by
increasing Col2 synthesis and decreasing ADAMTS5 expres-
sion, exerting a beneficial therapeutic effect on OA through
balancing synthesis and degradation of cartilage extracellular
matrix [115]. Among components in the exosome, miRNA
might participate in mediating the efficacy of MSC exosome
against OA. Exosomal miR-23b could inhibit protein kinase
A (PKA) signaling to induce chondrogenic differentiation
of human MSCs [116]. Moreover, overexpression of miR-
125b in human OA chondrocytes can suppress the IL-1β-
induced upregulation of ADAMTS4, and in silico analysis
further predicted ADAMTS4 as a putative target gene of
miR-125b can be directly regulated in chondrocytes during
OA development [117].

All these results demonstrated that the trophic modula-
tions of MSCs play an essential role in the cartilage regener-
ation in TMJ OA. However, more investigations are needed
to figure out the exact effective components among various
trophic factors produced by MSCs, which could not only
fulfill the current understanding of MSC-based therapy
under abberant environment but also enable allogenic trans-
plantations in a more controlled manner for better applica-
tions of tissue regeneration.

3.3. Tissue Engineering Approaches for Cartilage Tissue of
TMJ. Based on the rapid development of scaffold materials,
the cartilage regeneration of TMJ has been extensively
explored in tissue engineering investigations [118–120].

Polyglycolic acid (PGA) is one of the widely applied bio-
compatible materials in tissue engineering of TMJ cartilage.
Studies have proved that PGA enables proliferation of
porcine TMJ disc cells, and matrix deposition of Col1 was
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detected in PGA nonwoven meshes [121, 122]. However, the
rapid degradation of PGA is the major demerit leading to the
loss of structural/mechanical integrity and construct contrac-
tion over time. Due to the defects of PGA, polylactic acid
(PLA) has emerged as a more applicable biomaterial for
TMJ cartilage regeneration. Porcine TMJ disc cells seeded
in PLA had the increased cellularity, with more matrix
deposition of collagen and GAGs compared with these in
PGA construct [123]. Specifically, adverse construct contrac-
tion was not observed in PLA constructs compared to PGA.
Another study developed a PLA construct with autologous
adipose-derived MSCs predifferentiated in chondrogenic
medium. After transplantation in rabbit TMJ, a regular and
calcified surface of condyle cartilage was observed, accompa-
nied by the increased expression of Col2 [124].

Except for these scaffolds, syntheses with synthetic poly-
mers, such as PGA and PLA, natural biopolymers, such as
fibrin and chitosan, are also applied to the TMJ cartilage
regeneration based on their inherent advantage of biocom-
patibility. A recent study showed that fibrin could improve
cell seeding, proliferation, and chondrogenic differentiation
in vitro [85]. Moreover, a combination of fibrin/chitosan
scaffolds can promote the reparative ability of synovium-
derived MSCs, characterized by the fibrocartilage formation
with extracellular matrix deposition of Col1, Col2, and GAGs
in rat models with TMJ disc explants [85].

In addition to those preceding biopolymers, biologic
scaffold materials consisting of extracellular matrix (ECM),
such as decellularized urinary bladder matrix (UBM), have
aroused great attention in the field of cartilage regeneration.
These biologic scaffolds possess constructive remodeling
properties by promoting the de novo formation of site-
appropriate and functional host tissues, and they are already
applied to various preclinical studies and clinical trials [125,
126]. In a canine model of TMJ discectomy, decellularized
UBM scaffold acted as an effective interpositional material
for the TMJ disc remodeling with no secondary pathologic
changes. Of note, the UBM device was further replaced by
native tissues, including fibrocartilage, muscle, and connec-
tive tissues. This remodeled device consists of elongated
fibroblast-like cells within a highly aligned matrix of collagen
and site-appropriate soft tissue attachments at the periphery
of the implanted material [127].

Considering the pathological features of TMJ OA, emerg-
ing investigations have emphasized the pretreatments on the
scaffold to construct the stratification of cartilage and the
subchondral bone from a single source of MSCs [128].
BMSCs were induced into chondrogenic and osteogenic lin-
eages, and then encapsulated in the stratified polyethylene
glycol- (PEG-) based hydrogels to further photopolymerize
into human-shaped condyle. After transplantation in vivo,
distinct cartilaginous and osseous compartments of the
mandibular condyle were formed, with the expression of
cartilage-related Col2 and GAGs in the chondral layer and
osteogenic markers alkaline phosphatase and osteonectin in
the osteogenic layer [13].

Moreover, injectable biomaterial scaffolds have been
designed to act as delivery systems containing both cells
and biomolecules for more effectively modulating stem cell

fate and functions [129, 130]. It has the potential to sustain
stem cell survival and signal release [131]. The injectable
scaffolds with a lower crosslinked degree and matrix stiffness
can promote the chondrogenic differentiation of encapsu-
lated MSCs and increase the matrix biosynthesis of Col2
and GAGs [132]. Furthermore, changes on the mechanical
parameters of scaffolds could modulate the MSC differentia-
tion to form different cartilage tissues. MSCs in scaffolds of
higher cross-linking degree tend to differentiate into
fibroblasts and subsequently form fibrous/osteochondral tis-
sues in the OA rabbit model [133]. Collectively, the scaffold
architecture can influence the lineage differentiation of MSCs
and the mechanical parameters should be fully estimated to
improve MSC-based therapy and tissue engineering.

In summary, the ideal scaffold could incorporate specific
biomolecules and growth factors and enhance both chondro-
genic and osteogenic differentiation potential of MSCs under
different external stimuli, thus providing better applications
in cartilage regeneration in TMJ OA via tissue engineering.

4. Conclusion

Given the limited self-healing potentials of avascular
cartilage, little effective therapy is available for the repair of
normal TMJ tissues in OA disease. Although the conven-
tional nonsurgical or surgical treatments can relieve the joint
pain to some extent, they cannot completely restore the TMJ
function and reverse disease progression. MSCs, which have
the multilineage differentiation potentials, may provide an
alternative treatment for the cartilage degradation in TMJ
OA. Combined with the trophic modulations of MSCs and
various scaffold application, the formation of cartilaginous
compartment or even stratified cartilaginous and osseous
compartments has been accomplished in TMJ OA animal
models. Furthermore, continuous investigations are required
to detect the target efficiency and biocompatibility in the
therapeutic intervention of TMJ OA, hopefully towards the
preclinical and clinical researches like in OA treatment.
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